
Quantum criticality of the kagome antiferromagnet with Dzyaloshinskii-Moriya interactions

Yejin Huh,1 Lars Fritz,1,2 and Subir Sachdev1

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

�Received 10 March 2010; published 30 April 2010�

We investigate the zero-temperature phase diagram of the nearest-neighbor kagome antiferromagnet in the
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with bosonic spinons and a phase with antiferromagnetic long-range order. Connections to recent numerical
studies and experiments are discussed.
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I. INTRODUCTION

The nearest-neighbor spin S= 1
2 antiferromagnet on the

kagome lattice has been the focus of extensive theoretical
and experimental studies because it is a prime candidate for
realizing a ground state without antiferromagnetic order.

On the experimental side, much attention has focused on
the S=1 /2 compound herbertsmithite ZnCu3�OH�6Cl2. It has
J�170 K and no observed ordering or structural
distortion.1–4 However, there is an appreciable amount of
substitutional disorder between the Zn and Cu sites �believed
to be of the order 5–10 %� which affects the low-T
behavior.5–11 More importantly, there is an upturn in the sus-
ceptibility at T=75 K which has been ascribed to the
Dzyaloshinksii-Moriya �DM� interactions.5,12–15

On the theoretical side, the most recent evidence16–21 on
the nearest-neighbor antiferromagnet points consistently to a
ground state with a spin gap of 0.05J and valence-bond solid
�VBS� order. The pattern of the VBS order is quite complex
with a large unit cell, but was anticipated by Marston and
Zeng22 by an application of the VBS selection mechanism
described in the 1 /N expansion of the SU�N�
antiferromagnet.23

The influence of the DM interactions has also been stud-
ied theoretically.15,24–26 Starting with an “algebraic spin-
liquid” ground state, Hermele et al.26 argued that the DM
coupling, D, was a relevant perturbation, implying that an
infinitesimal D would induce long-range magnetic order. In a
recent exact diagonalization study, Cepas et al.24 reached a
different conclusion: they claim that there is a nonzero criti-
cal DM coupling Dc beyond which magnetic order is in-
duced. They estimate Dc /J�0.1, quite close to the value
measured13 for ZnCu3�OH�6Cl2 which has D /J�0.08. This
proximity led Cepas et al. to suggest that the quantum criti-
cality of the DM-induced transition to magnetic order con-
trols the observable properties of this kagome antiferroma-
gent.

The purpose of this paper is to propose a theory for the
quantum critical point discovered by Cepas et al.24 We will
compute various observables of this theory, allowing a po-
tential comparison with numerics and experiments.

Given the evidence for VBS order in the model without
DM interactions,16–19 it would appear we need a theory for
the transition from the VBS state to the magnetically ordered
state. However, the VBS ordering is weak and can reason-

ably be viewed as a perturbation on some underlying spin-
liquid ground state. Schwandt et al.21 have recently presented
evidence that the kagomé antiferromagnet is proximate to a
Z2 spin-liquid state, and that vision condensation in this state
leads to weak VBS ordering. Their dimer representation
leads naturally to Z2 spin-liquid states in the same class as
that originally described27,28 by the Schwinger boson
method.29,30 We will therefore neglect the complexities asso-
ciated with the VBS ordering and work with the parent Z2
spin-liquid state. This is equivalent to ignoring the physics of
the vison sector and assumes that the magnetic-ordering tran-
sition can be described in a theory of the spinons alone.31

The main result of this paper will be a theory of the quantum
phase transition from the Schwinger boson Z2 spin liquid to
the magnetically ordered state as induced by the DM inter-
actions.

We will begin in Sec. II with a description of the mean-
field theory of the Z2 spin liquid and its transition to the
magnetically ordered state in the presence of DM interac-
tions. This will be carried using the Sp�N� Schwinger boson
formulation,27,30 for which the mean-field theory becomes
exact in the large N limit. We will turn to fluctuation correc-
tions and the nature of the quantum critical point in Sec. III.
Here we will show that the critical theory is the familiar
three-dimensional XY model. However, its connection to ex-
perimental observables is subtle, in particular, the XY field
itself is not directly observable.

While this paper was in preparation, a description of the
Schwinger boson mean-field theory in the presence of DM
interactions also appeared in Ref. 32; they consider mean-
field solutions with larger unit cells than we do, but did not
analyze the critical field theory. Where they overlap, our re-
sults are in agreement with theirs. We also note the recent
experimental observations of Helton et al.,33 who present
evidence for quantum criticality in ZnCu3�OH�6Cl2.

II. MEAN-FIELD THEORY

The model we consider is a standard Heisenberg Hamil-
tonian supplemented by an additional DM interaction. It as-
sumes the form

H =
1

2�
i,j

�JijSi · Sj + Dij · �Si � Sj�� . �1�

Si in this notation denotes the spin operator at site i, Jij is
assumed to be uniform and of the nearest-neighbor type, and
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Dij =Dijez is taken along the z axis and staggered from tri-
angle to triangle,34 see Fig. 1.

This additional term explicitly breaks the spin-rotation
symmetry by favoring configurations lying in the x-y plane.
Furthermore this term increases the tendency of classical
spin ordering. It has been shown in earlier works29,30 that
Schwinger bosons are ideally suited to describe phase tran-
sitions between paramagnetic and magnetically ordered
phases in spin models. Following Ref. 27 we introduce a
Sp�N� generalization of the spin operators, which formally
allows to consider a controlled large N limit particularly
suited for the study of frustrated spin systems such as
kagome or triangular antiferromagnets. In the Sp�1� case,
which is isomorphic to SU�2�, one can represent the spin
variables as

Si = bi�
�

����

2
bi�� �2�

with �� being the Pauli matrices and with

bi� = �bi↑

bi↓
� � and �

�

bi�
� bi� = 2S = nb. �3�

In the case of the large-N generalization the Schwinger
bosons acquire another index counting the copies of the sys-
tem �we drop this index in the following discussions, but
display N whenever it is essential�. The large-N generaliza-
tion formally justifies the mean field with the saddle point
becoming exact in the limit N→�. In order to properly re-
formulate the problem at hand we introduce two decoupling
parameters

Qij = �
���

����bi�bj��,

Pij = �
���

����
x bi�bj��, �4�

where ���� is the antisymmetric tensor and �x is just the
standard Pauli matrix. We see from the above expressions
that Qij =−Qji whereas Pij = Pji. This implies that the bond
variables Pij do not have a direction.

The constraint Eq. �3� is implemented via a Lagrangian
multiplier in a standard way. The Hamiltonian of the system

formulated in the fields defined in Eq. �4� consequently reads

H
N

= −
1

2�
i,j

JijQij
� Qij −

i

4�
i,j

Dij�Pij
� Qij − Qij

� Pij�

+ �
i

�i�bi�
� bi� − �� , �5�

where �=nb /N. We furthermore introduce Nu as the number
of unit cells in the systems and Ns as the number of sites
within the unit cell. We can write the mean-field Hamiltonian
per flavor and unit cell as

HMF

NNu
=

1

Nu
�
k

���k�H�qij,pij,�,k���k� +
J

2 �
�ij��

	qij	2

+
iD

4 �
�ij��

�pij
� qij − qij

� pij� − Ns��1 + �� , �6�

where ��ij�� denotes the sum over bonds belonging to the unit
cell,

���k� = �b1↑
� �k�, . . . ,bNs↑

� �k�,b1↓�− k�, . . . ,bNs↓�− k�� �7�

and the matrix

H = � �I C��k�
C�k� �I

� �8�

with the matrices I �identity� and C�k� being Ns�Ns matri-
ces; the explicit form of these matrices is given in Appendix
A. As mentioned before, one of the major assets of the
Schwinger boson approach is that it can describe magneti-
cally disordered gapped spin-liquid phases as well as mag-
netically ordered states. On a formal level in the large N
approach this is achieved by introducing the following nota-
tion for the Schwinger bosons:

bi� = �
Nxi,bi
m̃� where m̃ = 2, . . . ,N . �9�

The first component is thus a classical field. If x�0 it signals
condensation which causes long-range order to appear. Fol-
lowing Refs. 27 and 29 we can integrate out the Schwinger
bosons and the zero-temperature mean-field energy assumes
the following form:

EMF

NNu
=

1

Nu
�

k,	=1,. . .,Ns


	�k� − Ns��1 + �� + ��
i��

	xi�	2

+
J

2 �
�ij��

�	qij	2 − �qij
� ����xi�xj��� + H.c.�

+
iD

4 �
�ij��

�pij
� qij − qij

� pij� −
iD

4 �
�ij��

�pij
� ����xi�xj��

+ qij����
x xi�

� xj��
� � +

iD

4 �
�ij��

�pij����xi�
� xj��

�

+ qij
� ����

x xi�xj��� , �10�

where �i� denotes the sum over all sites within one unit cell.

FIG. 1. Staggered DM interaction from triangle to triangle in z
direction as in Ref. 34. The arrowheads indicate D to come out of
the plane, whereas the tails denote D to go into the plane. Note that
the triangles are summed clockwise and anticlockwise, respectively,
indicated by the arrows on the bonds.
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In the following we solve the self-consistency equations ac-
cording to

� = �bi�
� bi��MF,

qij = �Qij�MF,

pij = �Pij�MF �11�

with the Hamiltonian defined in Eq. �6�.
Our solution of the mean-field equations follows previous

work,27,28 which classified physically different Z2 spin-liquid
solutions without the DM interactions. We found that these
solutions have a natural generalization in the presence of DM
terms with values of the pij which reflect the symmetries of
the qij. Two stable solutions were found in previous work
with only two possibly distinct values of qij as illustrated in
Fig. 2. Including the DM interactions, these solutions ex-
tended to:

�i� q1=q2 real, p1= p2 pure imaginary: upon increasing �,
the Schwinger bosons condense at k=0 with the spins at
angles of 120° to each other within the unit cell. This state is
therefore called the k=0 state.

�ii� q1=−q2 real, p1=−p2 pure imaginary: upon increasing
�, the Schwinger bosons condense at wave vector k
= � �2� /3,0� into a state which is called the 
3�
3 anti-
ferromagnet, characterized by an enlarged unit cell. Solu-
tions with larger unit cells can be present with additional
frustrating interactions,28 but we will not consider them here.

Phase diagram

Our phase diagram is shown in Fig. 3 as a function of �
=nb /N �which corresponds to the spin size� and the param-
eter D /J. Our phase diagram is similar to that obtained re-
cently by Messio et al.32 They also considered solutions with
a larger unit cell which were stable over some portion of the
phase diagram.

We start with a discussion of the classical limit. While for
D=0 the long-range ordered state of the 
3�
3 type is ge-

nerically preferred,27 infinitesimal D favors the so-called k
=0 state. This is reproduced by our mean-field equations in
the large spin limit �→�. For finite values of � there is a
small slab in which long-range order of the 
3�
3 type is
favored over the k=0. These states are separated by a first-
order transition driven by the ratio D /J.

A similar behavior appears for the corresponding spin-
liquid states at small �. The q1=−q2 is favored at small D /J
and then undergoes a first-order transition to the q1=q2 state
at large D /J.

In exact diagonalization studies of the spin S= 1
2 kagome

antiferromagnet with DM interactions a second-order phase
transition between a phase with short-ranged k=0
correlations18,35 �obtained in the pure Heisenberg case� and
phase with k=0 long-range order was found.32 Such a tran-
sition is also present in our mean-field theory, which there-
fore can be used for a study of critical properties in Sec. III.

III. QUANTUM CRITICALITY

We will consider only the transition out of the q1=q2 spin
liquid, because that is what is seen in the numerical studies.24

The corresponding transition out of the q1=−q2 spin liquid
can be treated in a similar manner. Throughout this section
we will consider the physical SU�2� antiferromagnet directly
and not take the large N limit. The method followed below
has been reviewed in a more general context in Ref. 30.

Since we are at k=0, we can write the effective action for
the bosons by making the small momentum expansion of the
matrix in Eq. �A2�. We take three sites, u, v, and w, in each
unit cell �see Fig. 2�, and then take the continuum limit of the
saddle-point Lagrangian. We write the boson operators on
these sites as bu�=U�, bv�=V�, etc., and set q1=q2=q and
p1= p2= ip with q and p real. Then, we write the final La-
grangian in the form

L = LH + LDM �12�

representing the contributions of the Heisenberg exchange
and the DM coupling, respectively.

�

�

�

FIG. 2. We take a unit cell of three sites, labeled u, v, and w.
The arrows indicate the values of the oriented variables qij. The
links with single arrows have qij =q1, while those with double ar-
rows have qij =q2. The Pij are unoriented and take values p1 and p2

on these links, respectively.
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FIG. 3. Phase diagram in the N→� limit of the Sp�N� theory.
The x axis shows �=2S /N and the y axis D /J. The phases have
long-range magnetic order type �LRO� or gapped Z2 spin liquids.
The thick line is a first-order transition while the thin lines are
second-order transitions: the transition to the k=0 LRO state is
described in Sec. III. The limit of D /J→0 reduces to the results
presented in Ref. 27.
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From Eq. �A2� we obtain the Lagrangian in the absence of
a DM term �which describes the k=0 solution of Ref. 27�

LH = U�
� �U�

��
+ V�

� �V�

��
+ W�

� �W�

��
+ ��	U�	2 + 	V�	2 + 	W�	2�

− Jq�����U�V�� + V�W�� + W�U��� + c.c.

+
Jq

2
������1U��1V�� + �2V��2W�� + �3W��3U��� + c.c.,

�13�

where �i is the gradient along the direction ei in Eq. �A1�.
We now perform a unitary transformation to new vari-

ables X�, Y�, and Z�. These are chosen to diagonalize only
the nongradient terms in LH.

U�

V�

W�

� =
Z�


6 1



2� + ����

Z��
�


6  i

i2

i
� +

Y�


6 1



2�
+ ����

Y��
�


6  − i

− i2

− i
� +

X�


31

1

1
� , �14�

where �e2�i/3. The tensor structure above makes it clear
that this transformation is rotationally invariant, and that X�,
Y�, and Z� transform as spinors under SU�2� spin rotations.
Inserting Eq. �14� into LH we find

LH = X�
� �X�

��
+ Y�

� �Z�

��
+ Z�

� �Y�

��

+ �� + 
3Jq�	Z�	2 + �� − 
3Jq�	Y�	2 + �	X�	2

+
Jq
3

2
�	�xZ�	2 + 	�yZ�	2� + ¯ . �15�

The ellipses indicate omitted terms involving spatial gradi-
ents in the X� and Y� which we will not keep track of. This
is because the fields Y� and X� are massive relative to Z� �for
q�0 which is the case in our mean-field solution�, and so
can be integrated out. This yields the effective Lagrangian

LH
Z =

1

�� − 
3Jq�
	��Z�	2 +

Jq
3

2
�	�xZ�	2 + 	�yZ�	2�

+ �� + 
3Jq�	Z�	2 + ¯ . �16�

Note that the omitted spatial gradient terms in X� and Y� do
contribute a correction to the spatial gradient term in Eq.
�16�, and we have not accounted for this. This Lagrangian
shows that the mean-field theory has a transition to magnetic
order at �= 	
3Jq	, which agrees with earlier results.27

The effective Lagrangian LH
Z is almost the complete solu-

tion for the critical theory in the system without the DM
interactions. However, we also need higher order terms in
Eq. �16�, which will arise from including the fluctuations of
the gapped fields Q and �. Rather than computing these from
the microscopic Lagrangian, it is more efficient to deduce
their structure from symmetry considerations. The represen-
tation in Eq. �14�, and the connection of the U, V, and W to

the lattice degrees of freedom, allow us to deduce the fol-
lowing symmetry transformations of the X, Y, and Z.

�1� Under a global spin rotation by the SU�2� matrix g���,
we have Z�→g���Z��, and similarly for Y and Z. When DM
interactions are included, the global symmetry is reduced to
U�1� rotations about the z axis, under which

Z↑ → ei�Z↑, Z↓ → e−i�Z↓,

Y↑ → ei�Y↑, Y↓ → e−i�Y↓,

X↑ → ei�X↑, X↓ → e−i�X↓. �17�

�2� Under a 120° lattice rotation, we have U�→V�, V�

→W�, and W�→U�. From Eq. �14�, we see that this sym-
metry is realized by

Z� → Z�, Y� → Y�, X� → X�. �18�

Note that this is distinct from the SU�2� rotation because
det���1.

�3� Under time reversal, we have U�→����U��
� and simi-

larly for V� and W�. This is realized in Eq. �14� by

Z� → iZ�, Y� → − iY�, X� → ����X��
� . �19�

In particular, note that Z↑ does not map to Z↓ under time
reversal.

It is easy to verify that Eq. �15� is invariant under all the
symmetry operations above. These symmetry operators make
it clear that the only allowed quartic term for the Heisenberg
Hamiltonian is ���	Z�	2�2: this implies that the Z2 spin liquid
to antiferromagnetic order transition of this model is in the
universality class of the O�4� model.37

Let us now include the DM interactions. From Eq. �A2�,
we see that

LDM = i
Dq

2
����

x �U�V�� + V�W�� + W�U��� + c.c. �20�

We have dropped a term proportional to Dp, which has the
same structure as the terms in Eq. �15�, and ignored spatial
gradients. In terms of the fields in Eq. �14�, this takes the
simple form

LDM =
Dq

2
�i����

x X�X�� + c.c. − Z�
�����

z Z�� + Y�
�����

z Y��� ,

�21�

and it can be verified that these terms are invariant under
Eqs. �17�–�19�. As before, we now integrate out X� and Y�

from LH+LDM in Eqs. �15� and �21�. We obtain a Lagrang-
ian with the same structure as Eq. �16�, but all couplings
become dependent on �; in other words, we have two sepa-
rate XY models for Z↑ and Z↓. Performing a careful analysis
of allowed higher order terms as restricted by the symmetry
constraints discussed above, and after appropriate rescalings
of the spatial, temporal, and field scales, we obtain the field
theory with the Lagrangian
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LZ = 	��Z↑	2 + 	�Z↑	2 + s↑	Z↑	2 + u↑	Z↑	4 + 	��Z↓	2 + 	�Z↓	2

+ s↓	Z↓	2 + u↓	Z↓	4 + v	Z↑	2	Z↓	2 + w��Z↑Z↓�6 + �Z↑
�Z↓

��6� .

�22�

Note that s↑�s↓, in general �and similarly for u↑,↓, etc.�, and
equality is not required by the time-reversal symmetry in Eq.
�19�. Time-reversal symmetry does prohibit a term ��Z↑Z↓�3

which is allowed by the other symmetries. Thus we expect
only one of Z↑ or Z↓ to condense at the quantum critical
point: as we will see from the analysis of observables in Sec.
III A, this transition does indeed correspond to the develop-
ment of spiral magnetic order in the x-y plane. The choice
between Z↑ and Z↓ is controlled by the sign of D.

Equation �22� also contains terms which couple the two
XY models to each other. The lowest allowed term, v,
couples the energy densities and does not have any important
effects. More interesting is the w term, which shows that the
global symmetry is not O�2� � O�2� but O�2� � Z12. In the
magnetically ordered phase with �Z↑��0 �say�, this term will
induce a small ordering field �Z↓

6 in the XY model for Z↓.
However, the action for Z↓ has a “mass” term s↓ with a
positive coefficient, and this sixth-order term will not imme-
diately induce ordering in Z↓, i.e., a magnetic phase with
�Z↑��0 and �Z↓�=0 has a finite range of stability. Thus close
to the transition we can neglect the Z↓ field entirely and
transition is in the universality class of the three-dimensional
XY model.

The choice above of Z↑ over Z↓ gives the incorrect ap-
pearance that we are breaking the spin-reflection symmetry
Sz→−Sz of H, suggesting the appearance of a net z ferro-
magnetic moment. However, notice that the theory of Z↑ is
relativistic, and so contains both spinons and antispinons
which carry Sz=+1 /2 and Sz=−1 /2, respectively. The spinon
of Z↓ also carries Sz=−1 /2, and this is degenerate with the
antispinon of Z↑ in the O�4� invariant theory in Eq. �16�. It is
this latter degeneracy which is lifted by the DM interactions,
which induce a vector spin chirality along the z direction36

�as we will see below�. We will also see there is no net
ferromagnetic moment, because time-reversal symmetry is
preserved.

A. Observables

To determine the operators corresponding to the ferro-
magnetic moment, let us couple a uniform external field h to
the lattice Hamiltonian. This adds to the continuum Lagrang-
ian the term

Lh = − h · �����U�
�U�� + V�

�V�� + W�
�W��� . �23�

Inserting the parameterization in Eq. �14� this becomes

Lh = − h · �����X�
�X�� + Y�

�Z�� + Z�
�Y��� . �24�

We now need to integrate out X� and Y� in the Lagrangian
LH+LDM+Lh defined by the sum of Eqs. �15�, �21�, and �24�
and collect the terms linear in h. Without the DM coupling,
we obtain

�h · �����Z�
�
�Z��

��
−

�Z�
�

��
Z��� . �25�

Comparing with LH
Z in Eq. �16� we see that this is just the

coupling to the conserved SU�2� charges of the O�4� model:
this is the usual term which determines the magnetic suscep-
tibility of the Heisenberg antiferromagnet.37 Upon including
the effects of LDM we find that the essential structure of Eq.
�25� does not change: the � matrices get multiplied by some
�-dependent factors ����→ f�����f�� which do not modify
the scaling considerations. No term with a new structure is
generated by the DM coupling. It can now be seen that these
expressions have vanishing expectation values under LZ in
Eq. �22�, and so there is no net ferromagnetic moment in the
absence of an external field.

We now turn to the antiferromagnetic order parameter; for
a coplanar antiferromagnet, this is described by

Si � N1 cos�Q · ri� + N2 sin�Q · ri� , �26�

where N1,2 are two orthogonal vectors representing the spiral
order and Q is wave vector at which the spin structure factor
is peaked. For our model, we can see that

N1 + iN2 = Su + Sv + 2Sw. �27�

Using Eq. �14�, and keeping only the lowest order term, we
therefore obtain37

N1 + iN2 =  i�Z↑
2 − Z↓

2�/2
− �Z↑

2 + Z↓
2�/2

− iZ↑Z↓
� , �28�

in a notation that makes the rotational invariance evident,
this relationship is

N1 + iN2 =
i

2
������Z�Z�. �29�

Note that a phase with �Z↑��0 and �Z↓�=0 has spiral order
in the x-y plane.

To complete the list of operators which are quadratic in
the Z�, we consider the vector spin chirality.36 This is defined
here by

Su � Sv + Sv � Sw + Sw � Su. �30�

Using Eq. �14� we find that the leading operator mapping to
vector spin chirality is �dropping an overall factor of 	Z↑	2
+ 	Z↓	2�

Z�
�����Z��. �31�

Note that in the presence of the DM term, the couplings in
the effective theory Eq. �22� imply that the z component of
the vector spin chirality is always nonzero.

B. Critical properties

Let us assume the transition to magnetic order proceeds
via the condensation of Z↑. The transition is in the XY uni-
versality class, and the dimension of the antiferromagnetic
order parameter is
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dim�N1� = dim�N2� = dim�Z↑
2� =

1 + �̄

2
. �32�

The value of the exponent �̄ can be read off from results for
the three-dimensional XY model,38,39 and we obtain �̄
�1.474. The antiferromagnetic susceptibility will diverge at
the critical point as T−�2−�̄�. We note the recent work of Ref.
40 in a different context, which also considered a model with
an XY critical point at which the physically measurable mag-
netic order was the square of the XY field.

The behavior of the uniform magnetic susceptibility fol-
lows from the scaling dimension of the operators in Eq. �25�.
For h along the z direction, the magnetization is the just the
conserved U�1� charge of the XY model: so41 it has scaling
dimension two and the susceptibility �T. For h along the x
or y directions, we have to integrate out Z↓, and then the
lowest dimension operator coupling to the square of the field
is 	Z↑	2. This means that the susceptibility only has a weak
singularity at the quantum critical point given by that in
�	Z↑	2�: at the quantum critical point, there is a nonanalytic
term �T3−1/�, above an analytic background.

IV. CONCLUSION

We have presented a theory for the quantum critical point
between a Z2 spin liquid and an ordered antiferromagnet for
the kagomé antiferromagnet in the presence of DM interac-
tions. The critical theory is just the three-dimensional XY
model. However, the XY order parameter carries a Z2 gauge
charge, and so it is not directly observable. In particular, the
antiferromagnetic order parameter is the square of the XY
order parameter. Specifically, the theory is given by LZ in
Eq. �22�, and its observables are described in Sec. III A.

It is interesting to compare our results with recent obser-
vations of quantum critical scaling in ZnCu3�OH�6Cl2 by
Helton et al.33 Their neutron-scattering measurements show
an antiferromagnetic susceptibility which scales as T−0.66.
This is actually in reasonable agreement with our theory,
which has a susceptibility �T−0.526. However, they also ob-
serve a similar divergence in measurements of the uniform
magnetization, while our theory only predicts a very weak
singularity. We suspect that this difference is due to the
present of impurities,6–9,15,42 which can mix the uniform and
staggered components. A complete study of impurities near
the quantum critical point described above is clearly called
for.
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APPENDIX A: MICROSCOPIC FORM OF
THE HAMILTONIAN

We here give explicit expressions for the Hamiltonian in-
troduced in Sec. II. We introduce the following set of unit
vectors:

e1 = a�1

2
,

3

2
� ,

e2 = a�1

2
,−


3

2
� ,

e3 = a�− 1,0� , �A1�

which allows to express ki=k ·ei. In the following we con-
centrate on the states with three sites per unit cell. In that
case the vector � introduced in Eq. �7� has six components
and the matrix C consequently is a 3�3 matrix with the
following entries:

Cuv =
J

2
q1

�eik1 +
J

2
q2

�e−ik1 +
iD

4
p1

�eik1 +
iD

4
q1

�eik1 +
iD

4
p2

�e−ik1

+
iD
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q2

�e−ik1,
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J
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4
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4
p2
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+
iD

4
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J
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q1

�e−ik1 −
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�eik1 −
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4
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iD

4
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4
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+
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Cwv = −
J
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�e−ik2 −
J
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�eik2 −
iD
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p1
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iD
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q1
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−
iD
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iD
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Cwu =
J
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+
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APPENDIX B: DISPERSION OF THE LOWEST
EXCITED SPINON STATE

For q1=q2 and D=0, the ground state is doubly degener-
ate. The degeneracy splits as D moves away from 0. In all
cases, the minimum excitation energy occurs at k=0.

Figure 4 plots the momentum dependence of the energy of
the lowest excited spinon at D /J=0.3, �=0.2. There is a
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finite energy gap at k=0 making it a gapped spin liquid. On
the other hand, Fig. 5 is the dispersion plot for a case with
long-range magnetic order. The energy gap at k=0 is closed
and condensation occurs at this wave vector.

For q1=−q2, there is a unique ground state even for D
=0. Energy minima is at k= � �2� /3,0�. Figure 6 shows the
dispersion of the lowest lying state of the spin liquid with
D /J=0.03, �=0.55. A case with long-range ordering is
shown in Fig. 7.

APPENDIX C: CONDENSATION

For the q1=q2 state Eq. �14� leads to the following param-
etrization of the condensation of Z↓ field at k=0:

�xu
↑

xu
↓ � = �� i

1
� ,

�xv
↑

xv
↓ � = ��i2


� ,

�xw
↑

xw
↓ � = ��i

2 � , �C1�

where � is the size of the condensate. Condensation of Z↑ can
be written similarly. For D�0, Z↓ field condensation is en-
ergetically favored while the opposite is true for D�0. The
two condensations are degenerate for D=0.

For the q1=−q2 state, condensation occurs at k̃�k�

= �2� /3,0� or k� =−k̃. The two states have identical energies
and the condensation is spontaneously chosen. Similar analy-
sis to Eqs. �13� and �14� gives the eigenvectors correspond-

ing to the lowest lying state. For k� = k̃ this is �i ,−i , i ,1 ,

−1 ,1� while for k� =−k̃ the corresponding eigenvector is
�−i , i ,−i ,1 ,−1 ,1�. Therefore condensations can be param-
etrized as

FIG. 4. �Color online� Momentum dependence of the energy

�k� of the lowest excited spinon state of the kagome-lattice quan-
tum antiferromagnet for the q1=q2 state at D /J=0.3, �=0.2. The
minimum excitation energy is at k=0 and has a finite energy gap.

FIG. 5. �Color online� Dispersion of the lowest excited spinon
state for the q1=q2 state at D /J=0.3, �=0.4. The energy gap
closes at k=0 and condensation occurs.

FIG. 6. �Color online� Disorder: q1=−q2 , D /J=0.05,
�=0.3.

FIG. 7. �Color online� Order: q1=−q2 , D /J=0.03, �=0.55.
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� xk↑
u

x−k↓
u � = �� i

1
� ,

� xk↑
v

x−k↓
v � = ��− i

− 1
� ,

� xk↑
w

x−k↓
w � = �� i

1
� �C2�

for k� = k̃ and

� xk↑
u

x−k↓
u � = ��− i

1
� ,

� xk↑
v

x−k↓
v � = �� i

− 1
� ,

� xk↑
w

x−k↓
w � = ��− i

1
� �C3�

for k� =−k̃.
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